Copied to
clipboard

G = C42.161D6order 192 = 26·3

161st non-split extension by C42 of D6 acting via D6/C3=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.161D6, C6.1392+ 1+4, C6.1002- 1+4, (C4×D12)⋊15C2, C4⋊C4.118D6, C422C24S3, D6⋊Q843C2, C4.D1241C2, Dic3⋊D4.4C2, C22⋊C4.79D6, C12.6Q89C2, D6.14(C4○D4), D6.D441C2, C23.9D651C2, C2.64(D4○D12), (C4×C12).33C22, (C2×C6).251C24, C2.64(Q8○D12), C4.Dic639C2, Dic34D436C2, (C2×C12).194C23, D6⋊C4.114C22, C4⋊Dic3.54C22, (C22×C6).65C23, C23.67(C22×S3), Dic3.D445C2, (C2×D12).227C22, C23.21D629C2, Dic3⋊C4.56C22, C22.272(S3×C23), (C22×S3).225C23, C39(C22.33C24), (C2×Dic3).265C23, (C2×Dic6).184C22, (C4×Dic3).151C22, C6.D4.67C22, (C22×Dic3).151C22, (S3×C4⋊C4)⋊41C2, C4⋊C4⋊S342C2, C2.98(S3×C4○D4), C6.209(C2×C4○D4), (C3×C422C2)⋊6C2, (S3×C2×C4).219C22, (C3×C4⋊C4).203C22, (C2×C4).209(C22×S3), (C2×C3⋊D4).71C22, (C3×C22⋊C4).76C22, SmallGroup(192,1266)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C42.161D6
C1C3C6C2×C6C22×S3S3×C2×C4S3×C4⋊C4 — C42.161D6
C3C2×C6 — C42.161D6
C1C22C422C2

Generators and relations for C42.161D6
 G = < a,b,c,d | a4=b4=1, c6=d2=b2, ab=ba, cac-1=dad-1=ab2, cbc-1=a2b-1, dbd-1=a2b, dcd-1=c5 >

Subgroups: 560 in 218 conjugacy classes, 93 normal (91 characteristic)
C1, C2, C2, C3, C4, C22, C22, S3, C6, C6, C2×C4, C2×C4, D4, Q8, C23, C23, Dic3, C12, D6, D6, C2×C6, C2×C6, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C2×D4, C2×Q8, Dic6, C4×S3, D12, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C22×S3, C22×C6, C2×C4⋊C4, C4×D4, C4⋊D4, C22⋊Q8, C22.D4, C42.C2, C422C2, C422C2, C4×Dic3, Dic3⋊C4, C4⋊Dic3, D6⋊C4, C6.D4, C4×C12, C3×C22⋊C4, C3×C4⋊C4, C2×Dic6, S3×C2×C4, C2×D12, C22×Dic3, C2×C3⋊D4, C22.33C24, C12.6Q8, C4×D12, Dic3.D4, Dic34D4, C23.9D6, Dic3⋊D4, C23.21D6, C4.Dic6, S3×C4⋊C4, D6.D4, D6⋊Q8, C4.D12, C4⋊C4⋊S3, C3×C422C2, C42.161D6
Quotients: C1, C2, C22, S3, C23, D6, C4○D4, C24, C22×S3, C2×C4○D4, 2+ 1+4, 2- 1+4, S3×C23, C22.33C24, S3×C4○D4, D4○D12, Q8○D12, C42.161D6

Smallest permutation representation of C42.161D6
On 96 points
Generators in S96
(1 55 37 83)(2 50 38 78)(3 57 39 73)(4 52 40 80)(5 59 41 75)(6 54 42 82)(7 49 43 77)(8 56 44 84)(9 51 45 79)(10 58 46 74)(11 53 47 81)(12 60 48 76)(13 62 35 87)(14 69 36 94)(15 64 25 89)(16 71 26 96)(17 66 27 91)(18 61 28 86)(19 68 29 93)(20 63 30 88)(21 70 31 95)(22 65 32 90)(23 72 33 85)(24 67 34 92)
(1 25 7 31)(2 22 8 16)(3 27 9 33)(4 24 10 18)(5 29 11 35)(6 14 12 20)(13 41 19 47)(15 43 21 37)(17 45 23 39)(26 38 32 44)(28 40 34 46)(30 42 36 48)(49 95 55 89)(50 65 56 71)(51 85 57 91)(52 67 58 61)(53 87 59 93)(54 69 60 63)(62 75 68 81)(64 77 70 83)(66 79 72 73)(74 86 80 92)(76 88 82 94)(78 90 84 96)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 36 7 30)(2 29 8 35)(3 34 9 28)(4 27 10 33)(5 32 11 26)(6 25 12 31)(13 38 19 44)(14 43 20 37)(15 48 21 42)(16 41 22 47)(17 46 23 40)(18 39 24 45)(49 94 55 88)(50 87 56 93)(51 92 57 86)(52 85 58 91)(53 90 59 96)(54 95 60 89)(61 79 67 73)(62 84 68 78)(63 77 69 83)(64 82 70 76)(65 75 71 81)(66 80 72 74)

G:=sub<Sym(96)| (1,55,37,83)(2,50,38,78)(3,57,39,73)(4,52,40,80)(5,59,41,75)(6,54,42,82)(7,49,43,77)(8,56,44,84)(9,51,45,79)(10,58,46,74)(11,53,47,81)(12,60,48,76)(13,62,35,87)(14,69,36,94)(15,64,25,89)(16,71,26,96)(17,66,27,91)(18,61,28,86)(19,68,29,93)(20,63,30,88)(21,70,31,95)(22,65,32,90)(23,72,33,85)(24,67,34,92), (1,25,7,31)(2,22,8,16)(3,27,9,33)(4,24,10,18)(5,29,11,35)(6,14,12,20)(13,41,19,47)(15,43,21,37)(17,45,23,39)(26,38,32,44)(28,40,34,46)(30,42,36,48)(49,95,55,89)(50,65,56,71)(51,85,57,91)(52,67,58,61)(53,87,59,93)(54,69,60,63)(62,75,68,81)(64,77,70,83)(66,79,72,73)(74,86,80,92)(76,88,82,94)(78,90,84,96), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,36,7,30)(2,29,8,35)(3,34,9,28)(4,27,10,33)(5,32,11,26)(6,25,12,31)(13,38,19,44)(14,43,20,37)(15,48,21,42)(16,41,22,47)(17,46,23,40)(18,39,24,45)(49,94,55,88)(50,87,56,93)(51,92,57,86)(52,85,58,91)(53,90,59,96)(54,95,60,89)(61,79,67,73)(62,84,68,78)(63,77,69,83)(64,82,70,76)(65,75,71,81)(66,80,72,74)>;

G:=Group( (1,55,37,83)(2,50,38,78)(3,57,39,73)(4,52,40,80)(5,59,41,75)(6,54,42,82)(7,49,43,77)(8,56,44,84)(9,51,45,79)(10,58,46,74)(11,53,47,81)(12,60,48,76)(13,62,35,87)(14,69,36,94)(15,64,25,89)(16,71,26,96)(17,66,27,91)(18,61,28,86)(19,68,29,93)(20,63,30,88)(21,70,31,95)(22,65,32,90)(23,72,33,85)(24,67,34,92), (1,25,7,31)(2,22,8,16)(3,27,9,33)(4,24,10,18)(5,29,11,35)(6,14,12,20)(13,41,19,47)(15,43,21,37)(17,45,23,39)(26,38,32,44)(28,40,34,46)(30,42,36,48)(49,95,55,89)(50,65,56,71)(51,85,57,91)(52,67,58,61)(53,87,59,93)(54,69,60,63)(62,75,68,81)(64,77,70,83)(66,79,72,73)(74,86,80,92)(76,88,82,94)(78,90,84,96), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,36,7,30)(2,29,8,35)(3,34,9,28)(4,27,10,33)(5,32,11,26)(6,25,12,31)(13,38,19,44)(14,43,20,37)(15,48,21,42)(16,41,22,47)(17,46,23,40)(18,39,24,45)(49,94,55,88)(50,87,56,93)(51,92,57,86)(52,85,58,91)(53,90,59,96)(54,95,60,89)(61,79,67,73)(62,84,68,78)(63,77,69,83)(64,82,70,76)(65,75,71,81)(66,80,72,74) );

G=PermutationGroup([[(1,55,37,83),(2,50,38,78),(3,57,39,73),(4,52,40,80),(5,59,41,75),(6,54,42,82),(7,49,43,77),(8,56,44,84),(9,51,45,79),(10,58,46,74),(11,53,47,81),(12,60,48,76),(13,62,35,87),(14,69,36,94),(15,64,25,89),(16,71,26,96),(17,66,27,91),(18,61,28,86),(19,68,29,93),(20,63,30,88),(21,70,31,95),(22,65,32,90),(23,72,33,85),(24,67,34,92)], [(1,25,7,31),(2,22,8,16),(3,27,9,33),(4,24,10,18),(5,29,11,35),(6,14,12,20),(13,41,19,47),(15,43,21,37),(17,45,23,39),(26,38,32,44),(28,40,34,46),(30,42,36,48),(49,95,55,89),(50,65,56,71),(51,85,57,91),(52,67,58,61),(53,87,59,93),(54,69,60,63),(62,75,68,81),(64,77,70,83),(66,79,72,73),(74,86,80,92),(76,88,82,94),(78,90,84,96)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,36,7,30),(2,29,8,35),(3,34,9,28),(4,27,10,33),(5,32,11,26),(6,25,12,31),(13,38,19,44),(14,43,20,37),(15,48,21,42),(16,41,22,47),(17,46,23,40),(18,39,24,45),(49,94,55,88),(50,87,56,93),(51,92,57,86),(52,85,58,91),(53,90,59,96),(54,95,60,89),(61,79,67,73),(62,84,68,78),(63,77,69,83),(64,82,70,76),(65,75,71,81),(66,80,72,74)]])

36 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C···4G4H4I4J···4N6A6B6C6D12A···12F12G12H12I
order122222223444···4444···4666612···12121212
size1111466122224···46612···1222284···4888

36 irreducible representations

dim1111111111111112222244444
type++++++++++++++++++++-+-
imageC1C2C2C2C2C2C2C2C2C2C2C2C2C2C2S3D6D6D6C4○D42+ 1+42- 1+4S3×C4○D4D4○D12Q8○D12
kernelC42.161D6C12.6Q8C4×D12Dic3.D4Dic34D4C23.9D6Dic3⋊D4C23.21D6C4.Dic6S3×C4⋊C4D6.D4D6⋊Q8C4.D12C4⋊C4⋊S3C3×C422C2C422C2C42C22⋊C4C4⋊C4D6C6C6C2C2C2
# reps1111121111111111133411222

Matrix representation of C42.161D6 in GL8(𝔽13)

80000000
08000000
00100000
00010000
0000012110
0000120011
00001001
00000110
,
10000000
912000000
001200000
000120000
00000100
000012000
00001001
0000012120
,
63000000
107000000
000120000
001120000
00005000
00000500
00000880
00008008
,
63000000
107000000
001210000
00010000
00000500
00005000
00008008
00000880

G:=sub<GL(8,GF(13))| [8,0,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,12,1,0,0,0,0,0,12,0,0,1,0,0,0,0,11,0,0,1,0,0,0,0,0,11,1,0],[1,9,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,12,1,0,0,0,0,0,1,0,0,12,0,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0],[6,10,0,0,0,0,0,0,3,7,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,12,12,0,0,0,0,0,0,0,0,5,0,0,8,0,0,0,0,0,5,8,0,0,0,0,0,0,0,8,0,0,0,0,0,0,0,0,8],[6,10,0,0,0,0,0,0,3,7,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,5,8,0,0,0,0,0,5,0,0,8,0,0,0,0,0,0,0,8,0,0,0,0,0,0,8,0] >;

C42.161D6 in GAP, Magma, Sage, TeX

C_4^2._{161}D_6
% in TeX

G:=Group("C4^2.161D6");
// GroupNames label

G:=SmallGroup(192,1266);
// by ID

G=gap.SmallGroup(192,1266);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,120,219,268,675,570,80,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^6=d^2=b^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a*b^2,c*b*c^-1=a^2*b^-1,d*b*d^-1=a^2*b,d*c*d^-1=c^5>;
// generators/relations

׿
×
𝔽